원자간 상호작용 소멸로 원자 4개당 1비트 저장, 500TB 급 반도체 가능성

개별 원자를 매개로 10nm 수준 메모리 소자 한계를 단숨에 0.5nm까지 축소할 수 있는 새로운 페러다임을 제시하는 연구 결과가 나왔다.

울산과학기술원(UNIST) 에너지 및 화학공학부 이준희 교수팀이 메모리 소자의 용량을 1,000배 이상 향상시킬 수 있는 산화하프늄(HfO2)의 새로운 기능을 찾아내는데 성공했다.

본 이론을 적용하면 원자에 직접 정보를 저장해, 기존 메모리 소재로는 불가능하다고 여겼던 작은 크기의 반도체 뿐 아니라 초집적/초저절전 인공지능 반도체 구현에까지 이용될 수 있을 것으로 예상된다.

과학기술정보통신부와 UNIST는 이번 성과가 세계적으로 저명한 국제학술지 사이언스(Science, IF 43.655)에 국내 이준희 교수팀 단독교신으로 7월 3일 4시(한국시간) 발표됐다고 밝혔다. 순수 이론 논문이 사이언스에 게재되는 것은 극히 이례적인 예이다.

기존에는 원자들 간 강한 탄성 상호작용으로 인해 원자 하나하나를 개별적으로 제어하는 것은 불가능하다고 알려져 있었다. 반도체 공정이 수십 나노 공정*이하로 내려갈 경우 모든 반도체가 저장 능력을 상실하는 ‘스케일 현상**’을 피할 수 없다고 보았기 때문이다.


차세대 강유전체 메모리(FeRAM)의 1비트 작동 모식도.
전압의 방향을 바꿈에 따라 원자의 위치 변환을 통해 0과 1을 조절, 1비트를 구현한다. 플래쉬 메모리와 달리 초저전력으로 빠르게 작동할 수 있는 장점이 있지만 스케일링 현상으로 인해 집적도를 높이는데 어려움을 겪고 있었다.

이준희 교수 연구팀은 산화하프늄(HfO2)이라는 반도체에 특정 전압을 가하면 원자를 스프링처럼 강하게 묶던 상호작용이 완전히 사라지는 새로운 물리현상을 발견했다.

전압이 원자들 사이 상호작용을 끊어주는 자연차폐막이 형성되는 현상을 이용해 마치 진공에 있는 것처럼 반도체 안에 존재하는 산소원자 4개씩을 개별적으로 스위칭하여 메모리 소재로 응용할 수 있음을 입증해 낸 것이다.


단일 원자 메모리와 기존 원자집단 (도메인) 메모리 원리 비교.
기존 메모리(왼쪽)는 원자간 스프링같은 상호작용으로 수십 나노미터 크기의 수천 개 원자집단 (도메인)이 동시에 움직여야 비로소 1비트를 저장할 수 있다. 하지만 이번에 개발된 단일원자를 이용하는 원자 메모리(오른쪽)의 경우 특정 전압을 걸 때 원자 간의 탄성 상호작용이 완전히 소멸되어 개별 원자 묶음 (산소원자 4개) 에 개별적인 비트 저장이 가능하다.

또한, 정보저장을 위해서 적어도 원자 수천 개 이상이 모여 만든 수십 나노미터 크기의 도메인*이 필요하다는 기존 이론과는 달리, 도메인 없이 0.5 나노미터에 불과한 개별 원자 4개 묶음에 정보를 저장, 일반 반도체에서도 단일원자 수준의 메모리를 구현할 수 있음도 입증했다.

산화하프늄(HfO2) 산화물은 기존의 실리콘 기반 반도체 공정에서 이미 흔하게 사용되는 물질로, 원자 이론의 상업화 적용 가능성이 높고 파급력도 클 것으로 기대된다.

연구팀이 제시한 단일 원자에 데이터를 저장하는 메모리(위)와 수천 개의 원자 집단인 도메인을 사용해 데이터를 저장하는 메모리 비교(아래).

이준희 교수는 “향후 초집적 반도체 분야에 세계적 경쟁력을 확보하기 위한 중요한 기반이 될 수 있는 이론으로, 개별 원자에 정보를 저장하는 기술은 원자를 쪼개지 않는 한, 현 반도체 산업의 마지막 집적 저장 기술이 될 확률이 높다” 고 연구의 파급력을 설명했다.

본 연구수행은 과학기술정보통신부가 계산과학 등 신연구방법론으로 새로운 물성과 기능을 구현하는 신소재 개발 추진하는 “미래소재디스커버리사업” 및 데이터 집약형 공학·과학분야 문제해결을 지원하는 “국가초고성능컴퓨팅 센터”의 지원 등으로 이루어졌다.

* 현재의 메모리 공정은 강유전체 메모리(FeRAM) 공정은 약 20나노, 플래쉬 메모리 공정은 10나노 선폭에서 멈춰있는 실정

** 정보 저장 및 처리 등 물질이 가진 능력이, 물질의 크기가 작아지면 약해지다가, 수십 나노미터 영역 이하로 작아지면 아예 사라지는 현상

※ 논문명 : Scale-free ferroelectricity induced by flat phonon bands in HfO2

※ 저 자 : 이준희 교수(교신저자), 이현재, 이민성, 이경준, 조진형, 양혜미, 김윤겸, 채승철 교수, Umesh Waghmare 총 9명