기초과학·소재·ICT 분야 28개 연구 과제 선정

 삼성전자는 ‘삼성미래기술육성사업’을 통해 2020년 상반기부터 지원할 연구 과제를 발표했다.

이번에 선정된 과제는 기초과학 분야 14개, 소재 분야 8개, ICT 분야 6개 등 총 28개로 연구비 388.5억 원이 지원된다.

특히, 국내 대학 소속의 외국인 연구자 2명이 제안한 과제도 선정해 국적에 관계없이 우수한 연구진을 발굴·지원한다.

삼성전자는 이번에 발표한 연구 과제를 포함해 지금까지 기초과학 분야 201개, 소재 분야 190개, ICT 분야 198개 등 총 589개 연구 과제에 7,589억 원의 연구비를 지원했다.

삼성미래기술육성재단 김성근 이사장은 “최근 세계적인 학술지에서 한국의 적극적인 연구 개발 투자와 성과를 집중 조명했다”며 “분야에 관계없이 세상을 바꿀 수 있는 도전적인 아이디어와 인재를 발굴하는 삼성미래기술육성사업이 이런 변화에 일조할 수 있을 것으로 기대한다”고 밝혔다.

상반기 연구 과제 28개 선정해 우주과학, AI, 뇌종양 치료 등 미래 신기술 연구 지원

기초과학 분야에서는 생명과학 5건, 수리과학 4건, 물리 3건, 화학 2건 등 총 14개 과제가 선정됐다.

최근 건강에 대한 관심이 높아지면서 관련 연구에 대한 지원이 늘어났다. 올해는 기초과학 분야 연구 지원 과제 중 30%에 해당하는 4건이 건강 관련 주제이다.

서울대학교 화학부 김성연 교수는 사람이 음식물을 먹으면 느끼는 포만감에 대한 연구를 진행할 예정이다.

포만감은 음식물이 소화기관을 자극하며 발생하는 화학적 자극과 음식물이 소화기관을 팽창시키며 전달하는 물리적 자극에 따른 것으로 알려져 있으며, 화학적 자극과 관련된 신경 회로에 대한 연구가 활발히 진행 중이다.

연구진은 한 단계 더 나아가 물리적 자극을 담당하는 신경 회로 관련 인자를 찾아낼 예정이다.

이 연구는 식욕 조절을 통한 비만·당뇨 등 치료에 돌파구를 마련할 것으로 예상된다.

유니스트(UNIST) 화학과 토마스 슐츠(Thomas Schultz) 교수는 레이저를 이용해 별과 별 사이의 우주 공간에 떠 있는 물질인 성간물질(interstellar matter)의 조성과 구조를 밝힐 예정이다.

성간물질은 과학자 ‘요하네스 하트만(Johannes Hartmann)’이 1904년 성간기체를 처음 관측한 이후 현재까지도 미지의 영역으로 알려져 있다.

앞으로 이 연구가 완성되면, 별의 탄생과 사멸 등 은하의 진화를 알 수 있어 인류가 우주의 비밀에 한발 더 다가설 수 있을 것으로 기대된다.

소재 분야에서는 차세대 광원, 배터리 소재 등 산업 경쟁력 강화에 기여할 수 있는 과제뿐만 아니라, 바이오 결합 기술 등 폭넓은 연구 분야에서 총 8개 과제를 지원한다.

고려대학교 물리학과 박홍규 교수는 양자암호통신의 기초가 되는 광자(빛 입자)를 생성하는 광원에 대한 연구를 진행한다.

양자암호통신을 위해서는 통신 파장 영역대의 단일 광자를 방출하고 제어하는 기술이 필수적이나 현재 기술로는 통신에 사용 가능한 단일 광자 생성은 불가능하다.

박 교수는 가시광 파장 영역대의 단일 광자 생성이 비교적 쉬운 물질을 이용해, 가시광 파장의 단일 광자를 통신에서 사용 가능한 단일 광자로 변환하는 연구를 진행할 계획이다.

이 연구는 양자암호통신 등 차세대 정보통신 분야에서 널리 활용될 수 있을 것으로 예상된다.

포스텍 신소재공학과 오승수 교수는 분자인식 기반의 고효율 바이오 결합 기술을 이용한 차세대 항암제 기술에 대해 연구한다.

항체와 약물을 효과적으로 결합시켜 특정 세포에만 약물을 전달하는 ‘항체약물결합체(Antibody Drug Conjugate)’를 고도로 발전시킨 기술이다.

오 교수는 항체약물결합 기술의 한계였던 항체와 약물간의 무차별 결합으로 인한 치료 효과 감소와 부작용, 복잡한 합성·정제 과정으로 인한 고비용 등의 문제점을 위치선택적 결합이 가능한 핵산 기반의 ‘압타머(Aptamer)’ 물질을 이용해 해결할 예정이다.

과제가 성공적으로 수행될 경우 기존 대비 최대 1,000배 이상의 치료 효과가 있으면서도 부작용은 현격히 줄이는 새로운 약물을 개발할 수 있을 것으로 예상된다.

ICT 분야에서는 뇌종양 치료, 차세대 이미징, 인공지능 등 미래 핵심기술 연구 분야에서 총 6개 과제가 선정됐다.

서울대학교 의공학과 최영빈 교수는 뇌종양 치료의 부작용을 최소화 할 수 있는 기술 개발에 도전한다.

통상 뇌종양은 두개골을 절제하는 외과적 수술이 대중화 돼 있으나, 종양의 완전한 절제가 어렵거나 정상 세포도 함께 절제되는 부작용이 있다.

연구진은 뇌종양 치료액, 치료액을 종양에 이동시키는 전기 장치, 치료액의 속도와 양을 제어하는 딥러닝 알고리즘 등 종합적인 치료 기술을 개발할 예정이다.

이 연구는 두개골 절제를 최소화 하면서 악성 세포에만 항암제 주입이 가능해 수술 후 부작용은 물론 정상 세포 손상도 최소화할 수 있을 것으로 예상된다.

카이스트(KAIST) 전산학부 김민혁 교수는 장애물 뒤에 있는 물체를 촬영할 수 있는 비시선(Non Line Of Sight) 이미징 기술 개발에 나선다.

비시선 이미징 기술은 방출된 광원이 반사돼 돌아오는 정보를 재조합해 영상을 만드는 기술로, 차세대 이미징 기술로 주목받고 있다.

기존 기술로는 단 한 장의 사진을 얻기 위해 수십 시간이 소요돼 실생활 적용이 불가능했으나, 새로운 개념의 광원과 인공지능을 결합한 딥러닝 알고리즘을 활용해 수 초 내에 영상을 구현하는데 도전한다.

향후 기술이 완성되면 재난·화재 시 인명 구조나 수술 현장에서 의료영상으로 활용하는 등 다양한 분야에서 활용이 가능할 것으로 전망된다.                                                                                    

* 삼성미래기술육성사업 2020년 상반기 연구 지원 과제

[기초과학 (14개)]                                 < 연구책임자 가나다 順 >

No.과제명연구책임자(소속)
1셀머 다양체에 대한 이와사와 이론의 방법론김도형(서울대)
2단분자 물리력이 아밀로이드 전구체 단백질 활성과 알츠하이머 질환 발생에 미치는 영향 연구김병철(인천대)
3물리적 포만감의 신경과학: 식욕을 조절하는 장-뇌 신호전달연구김성연(서울대)
4식물세포 전형성능의 세포분열 활성에 의한 조절노유선(서울대)
5극저온 쌍극성 분자들을 이용한 양자 시뮬레이션 및 컴퓨팅박지우(포스텍)
6단일 미토콘드리아 유전체/전사체 분석기반 질병세포 계보도 구축박지환(GIST)
7mod-p 랭글랜즈 프로그램을 향한 첫걸음박철(UNIST)
8볼록 실사영 덴 채움 연구이계선(성균관대)
9커넥토믹스와 지노믹스를 통한 행동조절 신경회로의 발생과 진화 연구이준호(서울대)
10오비트로닉스(Obitronics)이현우(포스텍)
11새로운 엔도사이토시스인 Reverse macropinocytosis(RevMac) 연구임대식(KAIST)
12평활화: 기본보조정리와 지겔질량식으로의 응용조성문(포스텍)
13유기촉매에 의한 탈산소화 다이카보닐-올레핀 복분해Jean Bouffard (이화여대)
14다차원 레이저 분광학을 활용한 불균일 분자 시료의 구조-특성 연구Thomas Schultz(UNIST)

[소재 (8개)]                                      < 연구책임자 가나다 順 >

No.과제명연구책임자(소속)
1야누스-입자 기반의 고출력 리튬-황 전지 전극 기술문준혁(서강대)
2BIC를 이용한 단일 광자의 양자 주파수 변환 연구박홍규(고려대)
3플러그인 화학: 분자인식 기반의 초정밀 위치선정 바이오 결합 기술오승수(포스텍)
4하버-보슈를 넘어서: 광감응 나노·바이오 하이브리드 암모니아 리파이너리이도창(KAIST)
5전기화학적 zero polarization 구현을 위한 적층 나노어레이형 소자 개발이승용(KIST)
61000Wh/L 급 양산형 리튬금속전지 시스템을 위한 전극 설계 및 요소 소재 기술 개발정경민(UNIST)